grpo_config.py
dict[str, Any]
或 None
,默认值 None
transformers.AutoModelForCausalLM.from_pretrained
的关键字参数,当GRPOTrainer
的model
参数提供为字符串时使用。remove_unused_columns: bool
,默认值 False
False
。max_prompt_length: int
或 None
,默认值 512
num_generations: int
或 None
,默认值 8
temperature: float
,默认值 0.9
max_completion_length: int
或 None
,默认值 256
ds3_gather_for_generation: bool
,默认值 True
在使用 vLLM 部署大型语言模型(LLM)时,我们经常会接触到模型目录下的各种配置文件。其中,tokenizer_config.json
是一个至关重要的文件,它像一座桥梁,连接着人类可读的文本与模型内部能理解的数字表示。本文将以部署 Qwen3-30B-A3B 模型为例,深入探讨 tokenizer_config.json
在 vLLM 中的作用以及其内部各项配置的含义。
旋转位置嵌入(RoPE)已被证明可以在基于 Transformer 的语言模型中有效编码位置信息。然而,这些模型无法泛化到超出其训练时所使用的序列长度。我们提出了 YaRN(Yet another RoPE extensioN method),一种计算高效的方法来扩展这类模型的上下文窗口,所需 token 数量比先前方法少 10 倍,训练步数少 2.5 倍。使用 YaRN,我们展示了 LLaMA 模型可以有效地利用并外推到远超其原始预训练所允许的上下文长度,同时在上下文窗口扩展方面也超越了先前的最先进水平。此外,我们证明了 YaRN 具有超越微调数据集有限上下文的外推能力。使用 YaRN 微调的模型已在 https://github.com/jquesnelle/yarn 上公开并可在线复现,上下文长度最高可达 128k。
基于 Transformer 的大型语言模型[40](LLMs)已成为许多自然语言处理(NLP)任务近乎无处不在的选择,在这些任务中,上下文学习(ICL)等长距离能力至关重要。在执行 NLP 任务时,由其训练过程决定的序列最大长度(上下文窗口)已成为预训练 LLM 的主要限制之一。通过少量微调(或无需微调)动态扩展上下文窗口的能力变得越来越重要。为此,Transformer 的位置编码成为讨论的中心。
最初的 Transformer 架构使用绝对正弦位置编码,后来改进为可学习的绝对位置编码[15]。此后,相对位置编码方案[32]进一步提高了 Transformer 的性能。目前,最流行的相对位置编码是 T5 相对偏置[30]、RoPE[34]、XPos[35]和 ALiBi[27]。
位置编码的一个反复出现的局限性是无法泛化到训练期间看到的上下文窗口之外。虽然像 ALiBi 这样的一些方法能够进行有限的泛化,但没有一种方法能够泛化到明显长于其预训练长度的序列[22]。
为了克服这一限制,已经进行了一些工作。[9]和同期[21]提出通过位置插值(PI)轻微修改 RoPE 并使用少量数据进行微调来扩展上下文长度。作为替代方案,[6]提出了"NTK-aware"插值法,考虑了高频信息的损失。此后,针对"NTK-aware"插值法提出了两种改进,各有侧重:
"NTK-aware"插值法和"Dynamic NTK"插值法已经在开源模型中得到应用,例如 Code Llama[31](使用"NTK-aware"插值法)和 Qwen 7B[2](使用"Dynamic NTK")。 在本文中,除了全面介绍先前未发表的关于"NTK-aware"、"Dynamic NTK"和"NTK-by-part"插值法的工作外,我们还提出了 YaRN(Yet another RoPE extensioN method),这是一种改进的方法,可以有效地扩展使用旋转位置嵌入(RoPE)训练的模型的上下文窗口,包括 LLaMA[38]、GPTNeoX[5]和 PaLM[10]系列模型。 YaRN 在仅使用约原始预训练数据 0.1% 的情况下进行微调后,在上下文窗口扩展方面达到了最先进的性能。同时,通过结合称为动态缩放(Dynamic Scaling)的推理时技术,Dynamic-YaRN 可以在没有任何微调的情况下实现超过 2 倍的上下文窗口扩展。