https://mp.weixin.qq.com/s/3t4PjpZcMVU1wCO0ThUs2A
本文系统阐述了AI Agent开发中新兴的“上下文工程”(Context Engineering)概念及其核心方法论。随着Agent在实际运行中产生海量工具调用和长程推理(long horizon reasoning),管理冗长上下文成为影响性能、成本和模型能力的关键瓶颈。
核心挑战:
五大核心策略:
核心启示与未来方向: 文章引用Hyung Won Chung的“The Bitter Lesson”指出,AI进步的根本驱动力是计算规模(Scaling Law)而非人工设计的复杂结构(归纳偏置)。随着模型能力持续指数级提升(如Claude 3.5的发布),最佳策略是构建灵活、通用、少结构化的系统,而非嵌入过多当前有效的假设,以便更好地适应未来模型的能力。企业应用应倾向于采用透明、可组合的底层编排框架(如Shopify Roast),而非黑箱化的Agent抽象,从而在模型能力追上时释放最大价值。AI Native产品(如Cursor、Windsurf)从零构建的优势正于此显现。
本文作者:Dong
本文链接:
版权声明:本博客所有文章除特别声明外,均采用 CC BY-NC。本作品采用《知识共享署名-非商业性使用 4.0 国际许可协议》进行许可。您可以在非商业用途下自由转载和修改,但必须注明出处并提供原作者链接。 许可协议。转载请注明出处!