项目github仓库:
https://github.com/sgl-project/sglang
项目说明书:
https://sgl-project.github.io/start/install.html
资讯:
快得离谱:


图来源:https://lmsys.org/blog/2024-09-04-sglang-v0-3/
Docker使用:
bash展开代码
docker run --gpus device=0 \
    --shm-size 32g \
    -p 30000:30000 \
    -v /root/xiedong/Qwen2-VL-7B-Instruct:/Qwen2-VL \
    --env "HF_TOKEN=abc-1234" \
    --ipc=host \
    -v /root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4:/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4 \
    lmsysorg/sglang:latest \
    python3 -m sglang.launch_server --model-path /Qwen2-VL --host 0.0.0.0 --port 30000 --chat-template qwen2-vl --context-length 8192 --log-level-http warning
启动成功:

接口文档:
http://101.136.22.140:30000/docs
bash展开代码import time
from openai import OpenAI
# 初始化OpenAI客户端
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:30000/v1')
# 定义图像路径
image_paths = [
    "/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo256.jpeg",
    "/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo512.jpeg",
    "/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo768.jpeg",
    "/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo1024.jpeg",
    "/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo1280.jpeg",
    "/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo2560.jpeg"
]
# 设置请求次数
num_requests = 10
# 存储每个图像的平均响应时间
average_speeds = {}
# 遍历每张图片
for image_path in image_paths:
    total_time = 0
    # 对每张图片执行 num_requests 次请求
    for _ in range(num_requests):
        start_time = time.time()
        # 发送请求并获取响应
        response = client.chat.completions.create(
            model="/Qwen2-VL",
            messages=[{
                'role': 'user',
                'content': [{
                    'type': 'text',
                    'text': 'Describe the image please',
                }, {
                    'type': 'image_url',
                    'image_url': {
                        'url': image_path,
                    },
                }],
            }],
            temperature=0.8,
            top_p=0.8
        )
        # 记录响应时间
        elapsed_time = time.time() - start_time
        total_time += elapsed_time
        # 打印当前请求的响应内容(可选)
        print(f"Response for {image_path}: {response.choices[0].message.content}")
    # 计算并记录该图像的平均响应时间
    average_speed = total_time / num_requests
    average_speeds[image_path] = average_speed
    print(f"Average speed for {image_path}: {average_speed} seconds")
# 输出所有图像的平均响应时间
for image_path, avg_speed in average_speeds.items():
    print(f"{image_path}: {avg_speed:.2f} seconds")
sglang 测试结果:
| Model | 显存占用 (MiB) | 分辨率 | 处理时间 (秒) | 
|---|---|---|---|
| Qwen2-VL-7B-Instruct | 70G | 256 x 256 | 1.71 | 
| 512 x 512 | 1.52 | ||
| 768 x 768 | 1.85 | ||
| 1024 x 1024 | 2.05 | ||
| 1280 x 1280 | 1.88 | ||
| 2560 x 2560 | 3.26 | 
纯transformer,不用加速框架,我之前的测了一张图的速度是:5.22 seconds,很慢。
启动:
bash展开代码docker run --gpus device=0 \ -v /root/xiedong/Qwen2-VL-7B-Instruct:/Qwen2-VL \ -v /root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4:/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4 \ -p 30000:8000 \ --ipc=host \ vllm/vllm-openai:latest \ --model /Qwen2-VL --gpu_memory_utilization=0.9
代码:
bash展开代码import time
import base64
from openai import OpenAI
# 初始化OpenAI客户端
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:30000/v1')
# 定义图像路径
image_paths = [
    "/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo256.jpeg",
    "/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo512.jpeg",
    "/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo768.jpeg",
    "/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo1024.jpeg",
    "/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo1280.jpeg",
    "/root/xiedong/Qwen2-VL-72B-Instruct-GPTQ-Int4/demo2560.jpeg"
]
# 设置请求次数
num_requests = 10
# 存储每个图像的平均响应时间
average_speeds = {}
# 将图片转换为 Base64 编码的函数
def image_to_base64(image_path):
    with open(image_path, "rb") as img_file:
        return base64.b64encode(img_file.read()).decode('utf-8')
# 遍历每张图片
for image_path in image_paths:
    total_time = 0
    # 将图片转换为 Base64 编码
    image_base64 = image_to_base64(image_path)
    # 对每张图片执行 num_requests 次请求
    for _ in range(num_requests):
        start_time = time.time()
        # 发送请求并获取响应
        response = client.chat.completions.create(
            model="/Qwen2-VL",
            messages=[{
                'role': 'user',
                'content': [{
                    'type': 'text',
                    'text': 'Describe the image please',
                }, {
                    'type': 'image_url',
                    'image_url': {
                        'url': f"data:image/jpeg;base64,{image_base64}",  # 使用Base64编码的图片
                    },
                }],
            }],
            temperature=0.8,
            top_p=0.8
        )
        # 记录响应时间
        elapsed_time = time.time() - start_time
        total_time += elapsed_time
        # 打印当前请求的响应内容(可选)
        print(f"Response for {image_path}: {response.choices[0].message.content}")
    # 计算并记录该图像的平均响应时间
    average_speed = total_time / num_requests
    average_speeds[image_path] = average_speed
    print(f"Average speed for {image_path}: {average_speed} seconds")
# 输出所有图像的平均响应时间
for image_path, avg_speed in average_speeds.items():
    print(f"{image_path}: {avg_speed:.2f} seconds")
速度:
| Model | 显存占用 (MiB) | 分辨率 | 处理时间 (秒) | 
|---|---|---|---|
| Qwen2-VL-72B-Instruct-GPTQ-Int4 | 70G | 256 x 256 | 1.50 | 
| 512 x 512 | 1.59 | ||
| 768 x 768 | 1.61 | ||
| 1024 x 1024 | 1.67 | ||
| 1280 x 1280 | 1.81 | ||
| 2560 x 2560 | 1.97 | 


本文作者:Dong
本文链接:
版权声明:本博客所有文章除特别声明外,均采用 CC BY-NC。本作品采用《知识共享署名-非商业性使用 4.0 国际许可协议》进行许可。您可以在非商业用途下自由转载和修改,但必须注明出处并提供原作者链接。 许可协议。转载请注明出处!